УКР ENG

Search:


Email:  
Password:  

 REGISTRATION CERTIFICATE

KV #19905-9705 PR dated 02.04.2013.

 FOUNDERS

RESEARCH CENTRE FOR INDUSTRIAL DEVELOPMENT PROBLEMS of NAS (KHARKIV, UKRAINE)

According to the decision No. 802 of the National Council of Television and Radio Broadcasting of Ukraine dated 14.03.2024, is registered as a subject in the field of print media.
ID R30-03156

 PUBLISHER

Liburkina L. M.

 SITE SECTIONS

Main page

Editorial staff

Editorial policy

Annotated catalogue (2011)

Annotated catalogue (2012)

Annotated catalogue (2013)

Annotated catalogue (2014)

Annotated catalogue (2015)

Annotated catalogue (2016)

Annotated catalogue (2017)

Annotated catalogue (2018)

Annotated catalogue (2019)

Annotated catalogue (2020)

Annotated catalogue (2021)

Annotated catalogue (2022)

Annotated catalogue (2023)

Annotated catalogue (2024)

Thematic sections of the journal

Proceedings of scientific conferences


Development of Risk Measurement Instrumentarium in Modeling of Uncertainty Using the Fuzzy Set Approach
Kotsyuba O. S.

Kotsyuba, Oleksiy S. (2019) “Development of Risk Measurement Instrumentarium in Modeling of Uncertainty Using the Fuzzy Set Approach.” Business Inform 11:149–156.
https://doi.org/10.32983/2222-4459-2019-11-149-156

Section: Economic and Mathematical Modeling

Article is written in Ukrainian
Downloads/views: 14

Download article (pdf) -

UDC 519.866:519.816

Abstract:
The article is aimed at developing a methodical apparatus for risk measurement using the fuzzy set theory in order to formalize uncertainty. The problem field of research is limited to a situation where an economic indicator that serves as a decision-making criterion is described by a fuzzy number, understanding the latter as a fuzzy value with normal and convex membership function. Based on the interval (by the levels of membership) method of presenting a fuzzy assessment of the criterion indicator, the publication considers such indicators of the risk degree as average absolute deviation, average range of variation, half-deviation (average absolute half-deviation), the average one-sided variation. The versions of the last two indicators, formulated in the study in terms of the fuzzy-set methodology, are the result of the refinement of their prototypes proposed in previous publications of the author. As evidence of the logical correctness of the revised versions of the half-deviation and the average one-sided variation are the corresponding equalities, which reflect the relationship of these indicators with the indicators of the average absolute deviation and average range variation, respectively. In general, the results of the proposed study should be regarded as separate components of a single system of instrumental means for quantifying the risk degree in a fuzzy data situation, the formation of which has not yet been completed and suggests further development.

Keywords: uncertainty, fuzziness, risk degree, average absolute deviation, average variation, half-deviation, average one-sided variation.

Fig.: 1. Tabl.: 1. Formulae: 42. Bibl.: 25.

Kotsyuba Oleksiy S. – Doctor of Sciences (Economics), Associate Professor, Professor, Department of Business Economics and Entrepreneurship, Kyiv National Economic University named after Vadym Hetman (54/1 Beresteiskyi Ave., Kyiv, 03057, Ukraine)
Email: [email protected]

List of references in article

Smolyak, S. A. Otsenka effektivnosti investitsionnykh proektov v usloviyakh riska i neopredelennosti (teoriya ozhidayemogo effekta) [Evaluation of the Effectiveness of Investment Projects in Conditions of Risk and Uncertainty (Theory of the Expected Effect)]. Moscow: Nauka, 2012.
Vitlinskyi, V. V., and Velykoivanenko, H. I. Ryzykolohiia v ekonomitsi ta pidpryiemnytstvi [Riskology in Economics and Entrepreneurship]. Kyiv: KNEU, 2004.
Nedosekin, A. O. “Metodologicheskiye osnovy modelirovaniya finansovoy deyatelnosti s ispolzovaniyem nechetko-mnozhestvennykh opisaniy“ [Methodological Foundations of Modeling Financial Activities Using Fuzzy-multiple Descriptions]: dis. ... d-ra ekon. nauk: 08.00.13, 2003.
Risk-menedzhment investitsionnogo proekta [Risk Management of an Investment Project]. Moscow: YuNITI-DANA, 2009.
Vorontsovskiy, A. V. Upravleniye riskami [Management of Risks]. Moscow: Yurayt, 2016.
Podinovskiy, V. V. “Mery riska kak kriterii vybora pri veroyatnostnoy neopredelennosti“ [Risk Measures as Selection Criteria with Probabilistic Uncertainty]. Iskusstvennyy intellekt i prinyatiye resheniy, no. 2 (2015): 60-74.
Bocharnikov, V. P. Fuzzy-tekhnologiya: matematicheskiye osnovy. Praktika modelirovaniya v ekonomike [Fuzzy Technology: Mathematical Foundations. Modeling Practice in Economics]. St. Petersburg: Nauka, 2001.
Diligenskiy, N. V., Dymova, L. G., and Sevastyanov, P. V. Nechetkoye modelirovaniye i mnogokriterialnaya optimizatsiya proizvodstvennykh sistem v usloviyakh neopredelennosti: tekhnologiya, ekonomika, ekologiya [Fuzzy Modeling and Multi-criteria Optimization of Production Systems in the Face of Uncertainty: Technology, Economics, Ecology]. Moscow: Mashinostroyeniye-1, 2004.
Altunin, A. Ye., and Semukhin, M. V. Raschety v usloviyakh riska i neopredelennosti v neftegazovykh tekhnologiyakh [Settlements under Conditions of Risk and Uncertainty in oil and gas Technologies]. Tyumen: Izd-vo Tyumenskogo gosudarstvennogo universiteta, 2004.
Chernov, V. G. Modeli podderzhki prinyatiya resheniy v investitsionnoy deyatelnosti na osnove apparata nechetkikh mnozhestv [Decision Support Models for Investment Activities Based on the Apparatus of Fuzzy Sets]. Moscow: Goryachaya liniya - Telekom, 2007.
Liu, B. Uncertainty theory. Berlin, Heidelberg: Springer-Verlag, 2015.
Peng, J. “Average Value at Risk in Fuzzy Risk Analysis“. Fuzzy Information and Engineering, vol. 2 (2009): 1303-1313.
Vercher, E., Bermudez, J. D., and Segura, J. V. “Fuzzy portfolio optimization under downside risk measures“. Fuzzy Sets and Systems, vol. 158, no. 7 (2007): 769-782.
Kahraman, C., and Kaya, I. “Investment analyses using fuzzy probability concept“. Technological and Economic Development of Economy, vol. 16, no. 1 (2010): 43-57.
Georgescu, I. Possibility Theory and the Risk. Berlin, Heidelberg: Springer-Verlag, 2012.
Luban, F. “Fuzzy model for risk analysis“. Journal of Industrial Engineering International, vol. 3, no. 5 (2007): 19-26.
Derevyanko, P. M. “Modeli i metody prinyatiya strategicheskikh resheniy po raspredeleniyu realnykh investitsiy predpriyatiya s primeneniyem teorii nechetkikh mnozhestv“ [Models and Methods for Making Strategic Decisions on the Distribution of Real Enterprise Investments Using the Theory of Fuzzy Sets]: dis. ... kand. ekon. nauk : 08.00.13, 2006.
Gavrilenko, M. A. “Primeneniye teorii nechetkikh mnozhestv v otsenke riskov investitsionnykh proektov“ [The use of the Theory of Fuzzy Sets in Assessing the Risks of Investment Projects]. Audit i finansovyy analiz, no. 5 (2013): 75-81.
Fedorenko, I. A., Mordovtsev, O. S., and Miasnykov, V. O. “Prohnozuvannia innovatsiinykh ryzykiv mashynobudivnykh pidpryiemstv iz vykorystanniam nechitkykh mnozhyn“ [Innovation Risks of Machine-Building Enterprises with the Use of Fuzzy Sets]. Problemy ekonomiky, no. 1 (2017): 447-456.
Andrenko, Ye. A., Mordovtsev, A. S., and Mordovtsev, S. M. “Prognozirovaniye investitsionnykh riskov v usloviyakh neopredelennosti“ [Forecasting Investment Risks in Conditions of Uncertainty]. Biznes Inform, no. 4 (2017): 113-118.
Kotsiuba, O. S. “Vymiriuvannia hospodarskoho ryzyku za nechitko-intervalnymy otsinkamy kryteriiv efektyvnosti“ [Measurement of Economic Risk Based on Fuzzy Interval Estimates of Efficiency Criteria]. Investytsii: praktyka ta dosvid, no. 12 (2016): 29-34.
Kotsiuba, O. S. “Nechitko-mnozhynna adaptatsiia imovirnisnykh pokaznykiv stupenia ryzyku“ [The Fuzzy Adaptation of Probabilistic Risk Indicators]. Problemy ekonomiky, no. 2 (2017): 317-323.
Kotsiuba, O. S. “Instrumentarii vymiriuvannia ryzyku v upravlinni ekonomichnymy systemamy: nynishnii stan ta napriamy rozvytku“ [Risk Measurement Tools in Economic Systems Management: Current Status and Directions of Development]. Vdoskonalennia ekonomiky ta finansovoi systemy krainy: aktualni problemy ta perspektyvy, part 2. Zaporizhzhia: KPU, 2018. 99-102.
Leonenkov, A. V. Nechetkoye modelirovaniye v srede MATLAB i fuzzyTECH [Fuzzy Modeling in MATLAB and FuzzyTECH]. St. Petersburg: BKhV-Peterburg, 2003.
Akhrameyko, A. A. “Obobshcheniye metoda analiza ierarkhiy Saati dlya ispolzovaniya nechetko-intervalnykh ekspertnykh dannykh“ [A Generalization of the Saati Hierarchy Analysis Method for Using Fuzzy-interval Expert Data]. Novyye informatsionnyye tekhnologii, vol. 1. Minsk: BGEU, 2002. 217-222.

 FOR AUTHORS

License Contract

Conditions of Publication

Article Requirements

Regulations on Peer-Reviewing

Publication Contract

Current Issue

Frequently asked questions

 INFORMATION

The Plan of Scientific Conferences


 OUR PARTNERS


Journal «The Problems of Economy»

  © Business Inform, 1992 - 2024 The site and its metadata are licensed under CC BY-SA. Write to webmaster